Liquid-phase and biphasic chlorination of some iodoarenes to form (dichloroiodo)arenes with sodium peroxodisulfate as the oxidant[†]

Andrzej Baranowski^a, Dariusz Plachta^a, Lech Skulski^{*a} and Marzena Klimaszewska^b

^aLaboratory of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, PL 02-097 Warsaw, Poland ^bDepartment of Drugs Technology, Faculty of Pharmacy, Medical University of Warsaw, Poland

Liquid-phase and biphasic (CCl₄/concd hydrochloric acid) chlorination of some iodoarenes to form the corresponding (dichloroiodo)arenes, prepared in 60–100% crude yields, are reported; dichlorine is produced as follows: $Na_2S_2O_8 + 2$ HCl (conc. aq.) \rightarrow Cl₂ + 2 NaHSO₄.

(Dichloroiodo)arenes, ArICl₂, play an important role in organic synthesis. Some more stable examples, *e.g.* (dichloroiodo)benzene, are widely used as potent and selective chlorinating and/or oxidizing agents.¹ They have a practical advantage over elemental chlorine (dichlorine) due to their easy and safe handling. For example, it was possible to monochlorinate 4-aminoacetophenone with PhICl2 on a 24.8 kg scale, in 87% yield.² Moreover, ArICl₂ may be readily converted to other important organic hypervalent iodine reagents, viz. iodosylarenes, iodylarenes, (diacyloxyiodo)arenes, (difluoroiodo)arenes,¹ and diaryliodonium salts.³

ArICl₂, yellow crystalline compounds, are light- and heatsensitive and often unstable to storage. They do not usually give satisfactory microanalyses and their melting points (with decomposition) are rather *uncertain*, depending upon the purity of the crude products prepared, the time after their preparation, and the rate of heating; see footnote "a" in Table 1.

In 1885 Willgerodt⁴ synthesized the first stable organic iodine(III) compound, (dichloroiodo)benzene: PhI + ICl₃ \rightarrow PhICl₂ + ICl. ArICl₂ can also be made as follows:³ Ar₂Hg + ICl₃ \rightarrow ArICl₂ + ArHgCl; this reaction is of preparative significance in the case of the vinyl-type organomercurials. In 1886 Willgerodt⁵ developed the most common method up to now for preparing ArICl₂, by passing a stream of Cl₂ through solutions of ArI in chloroform, at 0 °C. The yields are generally excellent when this method is applicable; ArICl₂ is not formed from ArI bearing oxidizable groups: *e.g.* OH, NH₂, ethylenic double bonds, *etc.* Anhydrous conditions previously demanded⁶ are not necessary.⁷ Recently, repeated preparations of PhICl₂ on a 20 kg scale (in 94% crude yield) were conducted² by direct chlorination of PhI, at -3 to +4°C, in CH₂Cl₂ as solvent.

A two-phase (CCl₄/concd hydrochloric acid) chlorination of several ArI to form the corresponding ArICl₂ (prepared in 50–98% crude yields) was recently reported.⁸ Dichlorine was produced in the aqueous phase as follows: KClO₃ (solid) + 6HCl (conc. aq.) $\rightarrow \uparrow 3$ Cl₂ + KCl + 3 H₂O. In the present work (*vide infra*) we produced the dichlorine in the aqueous phase as follows: Na₂S₂O₈ + 2 HCl (conc. aq.) $\rightarrow \uparrow Cl_2$ + 2NaHSO₄. However, a short preheating period (at 45 – 50°C) was necessary to start the oxidative reaction. In comparison with the classic Willgerodt method,^{2,5–7} the biphasic chlorinating methods avoid the inconvenient use of gaseous Cl₂. Hence they are relatively safe – since escape of Cl₂ to the atmosphere is considerably limited.

The inconvenient use of gaseous Cl₂ to afford ArICl₂ from ArI may also be avoided as follows: (i) by the action of hydrochloric acid on either iodosylarenes or (diacyloxyiodo)arenes previously otherwise obtained from ArI;¹ (ii) by using liquid SO₂Cl₂ added to a solution of ArI either in wet diethyl ether⁹ or (much better) in 98% acetic acid;¹⁰ (iii) by the action of a liquid mixture: cobalt(III) acetate - KCl - 67% aq. CF₃COOH on PhI;¹¹ (iv) by the use of hydrochloric acid oxidized in situ with sodium perborate in either acetonitrile or carbon tetrachloride (a biphasic procedure) containing a dissolved ArI;¹² (v) by the use of hydrochloric acid oxidized in situ with chromium(VI) oxide in acetic acid containing a dissolved ArI.13 However, some of these liquid-phase chlorination procedures demand the use of toxic oxidants.^{11,13} Hence the wastes left after the reactions are unavoidably contaminated with Co(II) or Cr(III) salts, respectively.

In the present work we used sodium peroxodisulfate (sodium persulfate), $Na_2S_2O_8$, a very potent,¹⁴ inexpensive,¹⁵ and often applied oxidant,¹⁶ which oxidized *in situ* concentrated hydrochloric acid mixed with glacial acetic acid containing a dissolved iodoarene. However, it was necessary to warm up the stirred reaction mixture to 45–50°C, to initiate the following reaction (liquid-phase procedure 1):

ArI + Na₂S₂O₈ + 2 HCl (concd aq.) $\frac{\text{AcOH}, 45-50^{\circ}\text{C to r.t., 4 h}}{60-100\%}$ ArICl₂ + 2 NaHSO₄

Scheme 1

Thus, an appropriate iodoarene (Table 1) was previously dissolved or suspended in glacial acetic acid and an excess of Na2S2O8 was added, followed with a large excess of concentrated hydrochloric acid. At first, it was necessary to warm the stirred reaction mixture to 45-50 °C. Next, the electric heating was turned off, and the stirring was continued for a further four hours. The final reaction mixture was poured into icewater, the collected yellow precipitate was washed well with ice-cold water until the washings were neutral, next with CCl₄ to remove organic impurities and then air-dried with avoidance of light. The crude yields obtained varied from 60 to 100% (Table 1); the melting points (with decomposition) of the crude ArICl₂ were fairly close to those reported in the literature. $^{2,5-8,10-13,17,18}$ After air-drying, the crude ArICl₂ were immediately analysed iodometrically⁵ to show a 89-95%purity. For the sake of comparison, iodobenzene, 4-iodoacetanilide, 2-iodobenzoic acid, and 1,4-fluoroiodobenzene were also chlorinated by the biphasic Procedure 2

^{*} To receive any correspondence. E-mail: lskulski@farm.amwaw.edu.pl † This is a Short Paper, there is therefore no corresponding material in

J Chem. Research (M).

Table 1	Chlorination	of iodoarenes	to the corresponding	(dichloroiodo)arenes
---------	--------------	---------------	----------------------	----------------------

Substrate	Product	Procedure	Crude yield, (%)
C ₆ H ₅ I	C ₆ H ₅ ICl ₂ ^a	1	100
0 5	0 5 2	2	100
4–MeCONH–C ₆ H₄I	4–MeCONH–C ₆ H ₄ ICI ₂	1 ^b	60
8 4	6 4 Z	2 ^{c,d}	90
4–MeO–C ₆ H₄I	4–MeO–C ₆ H ₄ ICI ₂	2 ^d	89
3–Me–C _e H _₄ I ^⁴	3–Me–C _e H៓₄IĈI₂ ¹	1	97
4–Me–C ₆ H₄I	4–Me–C ₆ H₄ICl ₂	1	96
4–F–C _e H _₄ I [‡]	4−F−C ₆ H ₄ IĈI ₂ ²	1	100
0 4	0 4 2	2	100
4–CI–C _e H₄I	4-CI-C _e H ₄ ICI ₂	1	86
4–Br–C _e H₄I	4–Br–C ₆ H ₄ ICl ₂	1	74
1,4–C ₆ H ₄ l ₂	4–I–C _e H _a IČI ₂ ²	1	100
2–I–4–NÕ ₂ –C ₆ H ₃ Me	2–ICl ₂ –4–NÓ ₂ –C ₆ H ₃ Me	1	77
2–I–C ₆ H₄ĆOÖ́H ̈́	2–ICI₂–C₅H₄ĆOÖ́H ຶ	1	93
0 4	2 0 4	2	95
3–I–C ₆ H₄COOH	3–ICl₂–C ₆ H₄COOH	1	86
4–I–C _̃ H₄COOH	4–ICI₂–C ₆ H₄COOH	1	100
2–I–C ₆ H₄NO ₂	2–ICl ₂ –C ₆ H₄NO ₂	1	95
$3-I-C_6^{\circ}H_4^{\circ}NO_2^{\prime}$	$3-ICI_2^2-C_6^2H_4^4NO_2^2$	1	100
$4-I-C_{6}^{\circ}H_{4}^{4}NO_{2}^{2}$	$4-ICI_2^2-C_6^9H_4^4NO_2^2$	1	99

^aM.p. (dec.) 112–115 °C; 91–94% purity. Due to the reasons explained in the text, the literature m.p.s (mostly with decomposition) reported for crude ArlCl₂ are *uncertain*. *E.g.* for crude PhICl₂ the following m.p.s have been reported (°C): 113–117;² 115–116;⁸ 117–119;¹⁰ 121;¹² 111–112;¹³ 120, 115–127, 110–136;¹⁷ 120–121.¹⁸ Keefer and Andrews¹⁸ have observed that in the cases of the dichlorides of 4-iodonitrobenzene and of 4-iodobenzoic acid all the dichlorine apparently was expelled when melting occurred; the recorded m.p.s for these were the same as those of the initial iodo compounds.

^bAcetic anhydride (25 ml) was additionally added to the starting reaction mixture in order to slow down (as much as possible) the acid hydrolysis of the acetamido group – particularly within the short preheating period (at 45–50°C).

^cThis example shows that for iodoarenes substituted with *hydrolysable* groups, Procedure 2 is preferable.

^dIt may be deduced from ref. 12 that it is preferable to obtain ArICl₂ from iodoanisoles and highly activated ArI with using either the biphasic^{8,12} or the classic Willgerodt^{2,5–7} methods, where ArI and a *less active* molecular chlorine, Cl₂, are both dissolved and reacting in an inert solvent. On the other hand appropriate liquid-phase oxidative chlorination protocols seem to be more suitable for *deactivated* ArI – because such ArI are reacted upon with some more active, though short-living, chlorine species, formed there *in statu nascendi*.

(experimental); the crude yields [except of 4-(dichloroiodo)acetanilide] and purities of the $ArICl_2$ obtained were the same as those obtained with procedure 1. We failed to chlorinate with Procedure 1: 2-iodo-1,4-xylene, iodome-sitylene, and 1,3,5-trichloro-2-iodobenzene.

In conclusion, we have presented two easy and inexpensive laboratory procedures for the effective preparation of crude ArICl₂ from some ArI listed in Table 1. In comparison with the classic Willgerodt method,^{2,5-7} they avoid the inconvenient use of gaseous Cl₂. The strongly acidic wastes left after the chlorination reactions contained no strongly toxic contaminants; they were disposed of, without problem, after neutralization and dilution. Hence, the present chlorination procedures are relatively environmentally benign. Procedure 1 is particularly suitable for *deactivated* iodoarenes (including all isomeric iodonitrobenzenes and iodobenzoic acids which are chlorinated within four hours) and, possibly, for largescale preparations of PhICl₂; see our former papers^{8,13} as well as footnotes "c" and "d" in Table 1. Procedure 2 is particularly suitable for highly activated ArI, e.g. iodoanisoles, and for ArI substituted with hydrolysable groups, e.g. iodoacetanilides.

Experimental

The starting iodoarenes, ArI, were either commercial products or obtained in our laboratory from studies¹⁹ on novel iodination methods. They were freshly purified prior to use. 4-Iodoacetanilide was obtained by the acylation of commercial 4-iodoaniline.²⁰ Sodium peroxodisulfate, Na₂S₂O₈, was a commercial product (Aldrich).¹⁵ All the chlorination reactions were carried out under a fume hood.

Procedure 1: Liquid-phase chlorination of ArI to the corresponding ArICl₂: An appropriate iodoarene (25 mmol) was dissolved or suspended in glacial acetic acid (50 ml). Powdered Na₂S₂O₈ (8.9 g, 37 mmol; 48% excess) was added to the stirred solution, followed with conc. (36%) hydrochloric acid (20.4 ml, 24.4 g, 244 mmol). The well stirred mixture was warmed up to 45–50°C. Then the electric heating was turned off and the stirring was continued for 4 hours. The resulting mixture was poured, with stirring, into ice-water (100 g). The yellow precipitate was collected by filtration, washed well with ice-cold water until the washings were neutral and then with CCl_4 . The crude products were air-dried *in the dark*. See Table 1 for more details.

Procedure 2: Biphasic chlorination of some ArI to the corresponding $ArICl_2$: An appropriate iodoarene (25 mmol) was dissolved or suspended in carbon tetrachloride (50 ml). This was added to a vigorously stirred mixture composed of: concd (36%) hydrochloric acid (20.4 ml, 24.4 g; 244 mmol) and powdered Na₂S₂O₈ (8.9 g, 37 mmol; 48% excess). The resulting mixture was warmed up, with stirring, to 45–50°C, then the electric heating was turned off, and the vigorous stirring was continued for 4 hours. The following workup was the same as that in Procedure 1. See Table 1 for more details.

References

- (a) A. Varvoglis, *The Organic Chemistry of Polycoordinated Iodine*, VCH, New York, 1992; (b) P.J. Stang and V.V. Zhdankin, *Chem. Rev.*, 1996, **96**, 1123; (c) A. Varvoglis, *Hypervalent Iodine in Organic Synthesis*, Academic Press, San Diego, 1997.
- 2 A. Zanka, H. Takeuchi and A. Kubota, Organic Process Res. Dev., 1998, 2, 270.
- 3 (a) L.G. Makarova and A.N. Nesmeyanov, *The Organic Compounds of Mercury*, North-Holland Publ., Amsterdam, 1967, pp. 374–375; (b) L. Skulski and W. Wroczyński, *Bull. Pol. Acad. Sci., Chem.*, 1999, **47**, 231.
- 4 C. Willgerodt, *Tageblatt der 58. Vers. deutcher Naturforscher u. Aerzte*, Strassburg, 1885.
- 5 C. Willgerodt, *Die organischen Verbindungen mit mehrwertigem Jod*, Enke Verlag, Stuttgart, 1914.
- 6 H. J. Lucas and E. R. Kennedy, Org. Synth., Coll. Vol. III, Wiley, New York, 1955, p. 482.
- 7 R. T. Taylor and T. A. Stevenson, *Tetrahedron Lett.*, 1988, **29**, 2033.
- 8 B. Krassowska-Świebocka, G. Prokopienko and L. Skulski, *Synlett*, 1999, 1409.
- 9 A. Töhl, Ber. Dtsch. Chem. Ges., 1893, 26, 2949.
- 10 B. Ya. Karele and O. Ya. Neiland, Latv. PSR Zinat. Akad. Vestis, Kim. Ser., 1970, 587; Chem. Abstr., 1971, 74, 42033.

- 11 D. I. Makhon'kov, A. V. Cheprakov and I. P. Beletskaya, *Zh. Org. Khim.*, 1986, **22**, 681; *Chem. Abstr.*, 1987, **106**, 155951.
- 12 D. Koyunçu, A. McKillop and L. McLaren, J. Chem. Res. (S), 1990, 21.
- 13 P. Kaźmierczak, L. Skulski and N. Obeid, J. Chem. Res. (S), 1999, 64.
- 14 P. J. Durant and B. Durant, *Introduction to Advanced Inorganic Chemistry*, Longmans, London, 1962.
- 15 Aldrich Catalogue Handbook of Fine Chemicals 1999-2000: Sodium persulfate, 98+%, 51.40 DM/1 kg Na₂S₂O₈. Potassium persulfate, 99+%, A.C.S. reagent, 122.20 DM/2x500 g K₂S₂O₈. Ammonium persulfate, 98+% A.C.S. reagent, 74.60 DM/2x500 g $(NH_4)_2S_2O_8$. We chose in this work the least costly sodium salt for our chlorination experiments.
- 16 (a) L. F. Fieser and M. Fieser, *Reagents for Organic Synthesis*, Wiley, New York, continued since 1968; (b) The nuclear and/or side-chain chlorination of benzene, naphthalene, 1,4-xylene, mesitylene, anisole, phenol and chlorobenzene with $Na_2S_2O_8$ as the oxidant was studied in 4:1 (v/v) acetonitrile–water solution

containing hydrochloric acid. CuCl₂ was found to be an efficient scavenger for the cation radicals and, if used in the presence of excess of Cl⁻ ion and $S_2O_8^{2^-}$, provides a useful process for the nuclear chlorination of activated aromatics, see: A. Ledwich and P.J. Russel, *J. Chem. Soc., Perkin Trans. II*, 1975, 1503. Later, also Swedish chemists studied the same oxidative chlorination of benzene, toluene, three xylenes, mesitylene, and naphthalene by $Na_2S_2O_8$ / LiCl in aq. acetonitrile, in the presence or absence of CuCl₂, see L. Eberson and L.-G. Wistrand, *Liebigs Ann. Chem.* 1976, 1777.

- 17 F.M. Beringer and E.M. Gindler, Iodine Abstr. Rev., 1956, 3, 1.
- 18 R.M. Keefer and L.J. Andrews, J. Am. Chem. Soc., 1958, 80, 277.
- 19 (a) B. Krassowska-Świebocka, P. Luliński and L. Skulski, Synthesis, 1995, 926 (b) P. Luliński and L. Skulski, Bull. Chem. Soc. Jpn., 1997 70 1665; 1999, 72, 115; 2000, 73 951 (c) A. Kryska and L. Skulski, J. Chem. Res.(S), 1999, 2501.
- 20 A.I. Vogel, A Textbook of Practical Organic Chemistry, Longmans, London, 1948, pp. 624, 627.